Module 5

Module 5: Limit Properties #

Example: Let \(f: \mathbb{R} \to \mathbb{R}\) be the function defined by \(f(x) = x^2\) for all \(x \in \mathbb{R}\). Let \(g: \mathbb{R} \to \mathbb{R}\) be the function defined by \(g(x) = x^3\) for all \(x \in \mathbb{R}\).

We can show that \(\lim (f, 2, 4)\) and \(\lim (g, 2, 8)\), i.e., that

\[ \lim_{x \to 2} f(x) = 4 \text{and} \lim_{x \to 2} g(x) = 8 \]

(For a given \(\varepsilon > 0\), \(\delta_f = \min(1, \varepsilon/5)\) and \(\delta_g = \min(1, \varepsilon/19)\) will work in the proof of the above limits).

Question: Can we use this information to determine \(\lim_{x \to 2} (f(x) + g(x))\) ?

Can we use \(\delta_f\) & \(\delta_g\) to find the \(\delta\) for this “sum” limit?

From graphing (& our knowledge concerning limits) we should get that:

\[ \lim_{x \to 2} (f(x) + g(x)) = \lim_{x \to 2} f(x) + \lim_{x \to 2} g(x) = 4 + 8 = 12. \]

Definition / Notation: Suppose we have \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\), and functions \(f: D \to E\) and \(g: D \to E\).

We define a function \(f+g\) as follows:

\((f+g): D \to E\)

where: \(x \mapsto f(x) + g(x)\) for all \(x \in D\)

or: \((f+g)(x) = f(x) + g(x)\)

With this notation: We should have \(\lim_{x \to 2} (f+g)(x) = 12\)

Idea: \(|(f+g)(x) - 12| < \epsilon \implies \text{This is what we will need.}\)

\(|(f+g)(x) - 12| = |f(x) + g(x) - 12| = |(f(x) - 4) + (g(x) - 8)|\)

\(\leq |f(x) - 4| + |g(x) - 8| \text{(Triangle Inequality)}\)

If we have \(|f(x) - 4| < \epsilon/2\) and \(|g(x) - 8| < \epsilon/2\), then this “\(|f(x) - 4| + |g(x) - 8|\)” will be less than \(\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon\).

This is what we need!

We know that \( \lim_{x \to 2} f(x) = 4 \), so for any \( \varepsilon > 0\), there is a \( \delta_f > 0 \) such that if \( |x-2| < \delta_f\), then \( |f(x) - 4 | < \varepsilon\).

As \( \frac{\varepsilon}{2} > 0\), there is a corresponding \( \hat{\delta_f} > 0 \) such that if \( |x-2| < \hat{\delta_f} \), then \( |f(x) - 4 | < \frac{\varepsilon}{2} \).

Similarly, we know that \( \lim_{x \to 2} g(x) = 8 \), so for any \( \varepsilon > 0\), there is a \( \delta_g > 0\) such that if \( |x-2| < \delta_g\), then \( |g(x) - 8 | < \varepsilon \).

As \( \frac{\varepsilon}{2} > 0\), there is a corresponding \( \hat{\delta_g} > 0 \) such that if \( |x-2| < \hat{\delta_g} \), then \( |g(x) - 8 | < \frac{\varepsilon}{2}\).

If \( \delta = \min(\hat{\delta_f}, \hat{\delta_g})\), then if \( |x-2| < \delta\), then both \( |x-2| < \hat{\delta_f}\) and \( |x-2| < \hat{\delta_g}\).

From this, we have: \( |f(x) - 4| < \frac{\varepsilon}{2} \) and \( |g(x) - 8 | < \frac{\varepsilon}{2}\)

Thus: \( |f(x) - 4 | + |g(x) - 8 | < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon\)

Theorem: Let \(D \subseteq \mathbb{R}\), \(E \subseteq \mathbb{R}\). Also, let \(f: D \to E\) and \(g: D \to E\) be functions and let \(a \in \mathbb{R}\) be an accumulation point of \(D\). If \(L \in \mathbb{R}\) and \(M \in \mathbb{R}\) are such that \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} g(x) = M\), then

\[ \lim_{x \to a} (f+g)(x) = L + M. \]

Proof: Let \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\) be arbitrary. Also, let \(f: D \to E\) and \(g: D \to E\) be arbitrary functions. Let \(a \in \mathbb{R}\) be an arbitrary accumulation point of \(D\). Finally, let \(L\) and \(M\) be arbitrary real numbers such that \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} g(x) = M\).

We need to show that \(\lim_{x \to a} (f+g)(x) = L + M\), i.e., that

\[ (\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in D \setminus \{a\}) (|x-a| < \delta \implies |(f+g)(x) - (L+M)| < \varepsilon) \]

Let \(\varepsilon > 0\) be arbitrary. As \(\lim_{x \to a} f(x) = L\) and as \(\frac{\varepsilon}{2} > 0\), there is some \(\delta_f > 0\) such that whenever \(x \in D \setminus {a}\) and \(|x-a| < \delta_f\), then \(|f(x) - L| < \frac{\varepsilon}{2}\).

Similarly, as \(\lim_{x \to a} g(x) = M\) and \(\frac{\varepsilon}{2} > 0\), there is some \(\delta_g > 0\) such that whenever \(x \in D \setminus {a}\) and \(|x-a| < \delta_g\), then \(|g(x) - M| < \frac{\varepsilon}{2}\).

Let \(\delta = \min(\delta_f, \delta_g)\). As both \(\delta_f > 0\) and \(\delta_g > 0\), we have \(\delta > 0\).

Now, let \(x \in D \backslash {a}\) be arbitrary, and suppose \(|x-a| < \delta\). As \(\delta = \min(\delta_f, \delta_g)\), we have that \(\delta \leq \delta_f\) and \(\delta \leq \delta_g\), so that as \(|x-a| < \delta\), we have both that \(|x-a| < \delta_f\) and \(|x-a| < \delta_g\).

As \(|x-a| < \delta_f\), we have \(|f(x) - L| < \epsilon/2\). Similarly, as \(|x-a| < \delta_g\), we have \(|g(x) - M| < \epsilon/2\).

Now:

\[ |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]

By the triangle inequality:

\[ |(f(x) - L) + (g(x) - M)| \leq |f(x) - L| + |g(x) - M|. \]

Hence, we have:

\[ |(f(x) - L) + (g(x) - M)| < \epsilon \] \[ |f(x) + g(x) - L - M| < \epsilon \] \[ |(f+g)(x) - (L+M)| < \epsilon. \]

Hence, \(|(f+g)(x) - (L+M)| < \epsilon\). Therefore, if \(|x-a| < \delta\), then \(|(f+g)(x) - (L+M)| < \epsilon\). As \(x \in D \backslash {a}\) was arbitrary, for all \(x \in D \backslash {a}\), if \(|x-a| < \delta\), then \(|(f+g)(x) - (L+M)| < \epsilon\). As \(\delta > 0\), there exists a \(\delta > 0\) such that for all \(x \in D \backslash {a}\), if \(|x-a| < \delta\), then \(|(f+g)(x) - (L+M)| < \epsilon\).

As \(\epsilon > 0\) was arbitrary, for all \(\epsilon > 0\), there exists a \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(|(f+g)(x) - (L+M)| < \epsilon\). Hence, we have that \(\lim_{x \to a} (f+g)(x) = L + M\). As, \(D, E, f, g, a, L\) and \(M\) were arbitrary, for any sets \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\), for any functions \(f: D \to E\) and \(g: D \to E\), any accumulation point \(a\) of \(D\) and any real numbers \(L\) and \(M\) such that \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} g(x) = M\), we have \(\lim_{x \to a} (f+g)(x) = L + M\). \(\blacksquare\)

\[ \begin{aligned} &f(x) = \sqrt{x-5} \\ &g(x) = (\sqrt{x-5})x \\ &f: [5, \infty) \rightarrow \mathbb{R} \\ &g: [5, \infty) \rightarrow \mathbb{R} \\ &fg: [5, \infty) \rightarrow \mathbb{R} \\ &(fg)(x) = f(x) \cdot g(x) \\ &= (\sqrt{x-5})(\sqrt{x-5} x) \\ &= (x-5)x \\ &= x^2 - 5x \\ &(fg)(0) = 0 \\ & (fg)(0) \neq 0 \\ & \frac{(fg)(0)}{} \\ & DNE \\ &(fg)(0) = f(0) \cdot g(0) \end{aligned} \] \[ \begin{aligned} \lim_{x \to 0} xe^x &= (\lim_{x \to 0} x)(\lim_{x \to 0} e^x) \\ &= 0 \cdot 1 \\ &= 0 \end{aligned} \] \[ \begin{aligned} & | f(x) \cdot g(x) - L g(x) + Lg(x) - LM | \\ &= | g(x)(f(x) - L) + L(g(x) - M) | \\ & |A+B| \leq |A| + |B| \\ & \lim_{x \to a} f(x) = L \\ & \forall \epsilon > 0 \exists \delta > 0 \forall x \in D \setminus \{a \} (|x-a| < \delta \implies |f(x) - L| < \epsilon) \end{aligned} \] \[ \begin{aligned} 3 &= \frac{2}{3} + \frac{2}{3} + \frac{2}{3} \\ &\ge | f(x) - f(x)| - | \\ &\ge \frac{2}{3} | w - w(x) | \end{aligned} \] \[ \begin{aligned} & \text{goal} \\ & ||g(x)-H|| \le \frac{\epsilon}{2} \\ & |g(x) - H| \le \\ & |L||g(x)-H| \le (L+1)|g(x)-H| \\ & \frac{\epsilon}{3} \ge |g(x)-H| \ge \frac{\epsilon}{3} \\ & |L| \le |L+1| \\ & |Lg(x)-H| \ge (L+1)|g(x)-H| \\ & |L| \le |L|+1 \\ & |L||g(x)-H| \ge (L+1)|g(x)-H| \\ & \frac{\epsilon}{3} \ge |g(x)-H| \end{aligned} \]

|M| + 1 > M

\(y = |g(x)|\)

\(\lim_{x \to a} g(x) = M\)

\(\lim_{x \to a} |g(x)| = |M|\)

|M| - 1

a - \(\delta\) a a + \(\delta\)

Then there is a \(\delta\),

s/t If \(|x - a| < \delta\)

Then \(|g(x)| - |M| | > 1\)

\(\exists \delta > 0 \forall x \in \)

(\( |x - a| < \delta\)

I had trouble with some of the notation/symbols. I’ve made my best guess.

\(S = S + \frac{(1 + 1 \times 2)}{(1 + 1)}S\)

Definition / Notation: Suppose we have \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\) and functions \ \(F: D \to E\) and \(g: D \to E\). \ We define a function \(fg\) as follows: \ \((fg): D \to E\) \ where: \(x \mapsto f(x) \cdot g(x)\) for all \(x \in D\). \ or: \((fg)(x) = f(x) \cdot g(x)\) \ \(\uparrow\) \(\uparrow\) \ “New” Function “Old”/original/given functions \

Our next goal will be to prove the following theorem: \ Let \(D \subseteq \mathbb{R}\), \(E \subseteq \mathbb{R}\) and let \(f: D \to E\) and \(g: D \to E\) be functions. \ Let \(a \in \mathbb{R}\) be an accumulation point of \(D\). Let \(L \in \mathbb{R}\) and \(M \in \mathbb{R}\). \ If \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} g(x) = M\), then \(\lim_{x \to a} (fg)(x) = LM\). \

As per usual, we will need to find \(\delta\) such that if \(|x-a| < \delta\), \ then: \(| (fg)(x) - LM | < \epsilon\) \

In Scratch Work we start here & work \ backwards to find \(\delta = \delta(\epsilon)\)

“Scratch Work”:

\[ \begin{aligned} | (fg)(x) - LM | &= |f(x) \cdot g(x) - LM | \xrightarrow[\text{}]{\text{Def. of } (fg)} \\ &= |f(x) \cdot g(x) - L \cdot g(x) + L \cdot g(x) - LM | \\ &= | g(x)(f(x) - L) + L(g(x) - M)| \end{aligned} \]

Note: As \(\lim_{x \to a} f(x) = L\), there is a \(\delta_f > 0\) such that if \(|x-a| < \delta_f\), then \(|f(x)-L| < \epsilon\) (for any \(\epsilon > 0\)). As \(\lim_{x \to a} g(x) = M\), there is a \(\delta_g > 0\) such that if \(|x-a| < \delta_g\), then \(|g(x)-M| < \epsilon\) (for any \(\epsilon > 0\)).

\[ \begin{aligned} &\leq |g(x)| |f(x) - L | + |L | \cdot |g(x) - M| \text{(Triangle Inequality)} \\ &= |g(x)| |f(x) - L| + |L | \cdot |g(x) - M| \end{aligned} \]

(1) We’ll try to make this \(< \frac{\epsilon}{2}\):

(2) \(|L| \cdot |g(x) - M | < (|L|+1) |g(x) - M| < \frac{\epsilon}{2}\)

\(|g(x) - M| < \frac{\frac{\epsilon}{2}}{(|L|+1)}\)

Positive, so we get: \(\delta_g = \delta_g \left( \frac{\epsilon}{2(|L|+1)} \right)\)

\[ \begin{aligned} &x

② We’ll try to get \(|g(x)||f(x)-L| < \frac{\varepsilon}{2}\).

We’ll use a similar idea as in ①, but \(|f(x)-L| < \frac{\varepsilon}{2(|g(x)|+1)}\) won’t work as this changes based on \(x\) (so \(\delta_\varepsilon\) would as well).

Instead: we will want \(|g(x)| \leq M_g\), some positive constant.

If we get this, then:

\[ |g(x)||f(x)-L| \leq M_g|f(x)-L| < \frac{\varepsilon}{2} \] \[ |f(x)-L| < \frac{\varepsilon}{2M_g} \]

Positive, so we get \(\delta_f = \delta_\varepsilon\left( \frac{\varepsilon}{2M_g} \right)\).

Notice: As \(1 > 0\), we can find a \(\delta_1 > 0\) such that if \(|x-a|<\delta_1\), then \(||g(x)|-|M||<1\).

In particular, if \(|x-a|<\delta_1\), then \(|g(x)| < |M|+1 = M_g\)

(We will need to prove that if \(\lim_{x\to a} g(x) = M\), then \(\lim_{x\to a} |g(x)| = |M|\)).

(For now, we will assume this fact.)

“Idea” so far: We will three upper limits for \(\delta\):

\[ \delta \leq \delta_1: \text{ Whenever } |x-a| < \delta_1, \text{ then } | |g(x)| - |M| | < 1 \]

This will give \(|g(x)| < |M| + 1\)

\[ \delta \leq \delta_f= \delta_f(\frac{\varepsilon}{2(|M|+1)}): \text{ When ever } |x-a| < \delta_f, \text{ then } |f(x) - L| < \frac{\varepsilon}{2(|M|+1)} \]

This will give \(|g(x)| |f(x) - L| < \frac{\varepsilon}{2} \)

\[ \delta \leq \delta_g = \delta_g(\frac{\varepsilon}{2(|L|+1)}): \text{ Whenever } |x-a| < \delta_g, \text{ then } |g(x) - M| < \frac{\varepsilon}{2(|L|+1)} \]

This will give \(|L||g(x) - M| < \frac{\varepsilon}{2} \)

Putting this together: We let \(\delta = \min(\delta_1, \delta_f, \delta_g)\). For \(|x-a| < \delta\):

As \(|x-a| < \delta_1\), we have \(| |g(x)| - |M| | < 1\), so \(-1 < |g(x)| - |M| < 1\), and \(|M| - 1 < |g(x)| < |M| + 1\), so \(|g(x)| < |M| + 1\).

As \(|x-a| < \delta_f\), we have \(|f(x) - L| < \frac{\varepsilon}{2(|M|+1)}\), so \((|M|+1) |f(x) - L| < \frac{\varepsilon}{2}\).

As \(|g(x)| < |M| + 1\), \(|g(x)| |f(x) - L| < (|M|+1) |f(x) - L|\). Hence, \(|g(x)||f(x) - L| < \frac{\varepsilon}{2}\)

As \(|x-a| < \delta_g\), we have \(|g(x) - M| < \frac{\varepsilon}{2(|L|+1)}\), so \((|L|+1) |g(x) - M| < \frac{\varepsilon}{2}\).

As \(|L| < |L|+1\), \(|L||g(x) - M| < (|L|+1)|g(x) - M|\). Hence, \(|L||g(x) - M| < \frac{\varepsilon}{2}\).

If \(\lim_{x \to a} g(x) = M\), then \(\lim_{x \to a} |g(x)| = |M|\).

\text{If } |x-a| < \delta, \text{ then } | l(x) - l | < 3

Putting this together: \(|g(x)f(x) - LM| = |g(x)f(x) - Lg(x) + Lg(x) - LM| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon\)

As \(|g(x)f(x) - LM| = |g(x)f(x) - Lg(x) + Lg(x) - LM| \leq |g(x)(f(x) - L)| + |L(g(x) - M)|\) \ (by the triangle inequality), we have: \ \(|g(x)f(x) - Lg(x) + Lg(x) - LM| \leq |g(x)(f(x) - L)| + |L(g(x) - M)| < \epsilon\) \ \(|g(x)f(x) - Lg(x) + Lg(x) - LM| < \epsilon\) \ \(|f(x)g(x) - LM| < \epsilon\) \ \(|(fg)(x) - LM| < \epsilon\)

For the proof: Set-up/introduce D, E, f and g. Introduce a, L, M. Assume \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} g(x) = M\). Let \(\epsilon > 0\) be arbitrary.

  • Use these assumed limits to define \(\delta_f\) (for \(\frac{\epsilon}{2(|M| + 1)}\)), \(\delta_g\) (for \(\frac{\epsilon}{2(|L| + 1)}\)), and \(\delta_1\) (for 1).
  • Set \(\delta = \min(\delta_f, \delta_g, \delta_1)\) and explain why \(\delta > 0\).
  • Let \(x \in D \setminus {a}\) be arbitrary and suppose \(|x - a| < \delta\).
  • Show \(|(fg)(x) - LM| < \epsilon\). (Using the above arguments)
  • Conclude the proof (building back up to quantified statement).

Proof: Let \(D \subseteq \mathbb{R}\), \(E \subseteq \mathbb{R}\). Let \(g : D \to E\) be a function and let \(a \in \mathbb{R}\) be an accumulation point of \(D\). Also, let \(M \in \mathbb{R}\) and suppose \(\lim_{x \to a} g(x) = M\).

We will prove that \(\lim_{x \to a} |g(x)| = |M|\).

Let \(\varepsilon > 0\) be arbitrary. As \(\lim_{x \to a} g(x) = M\), there is a \(\hat{\delta} > 0\) such that for any \(x \in D \setminus {a}\), if \(|x - a| < \hat{\delta}\), then \(|g(x) - M| < \varepsilon\).

We will consider three cases.

Case 1: Suppose \(M = 0\). Then, let \(\delta = \hat{\delta}\). As \(\hat{\delta} > 0\), \(\delta > 0\). Let \(x \in D \setminus {a}\) be arbitrary, and suppose \(|x - a| < \delta\). Then, we have that \(|x - a| < \hat{\delta}\) so that \(|g(x) - M| < \varepsilon\). In this case: \(|g(x) - 0| < \varepsilon\), so \(|g(x)| < \varepsilon\), and \(||g(x)|| < \varepsilon\). From this, \(||g(x)| - 0| < \varepsilon\), and \(||g(x)| - |0|| < \varepsilon\), so that \(| |g(x)| - |M| | < \varepsilon\). Hence, if \(|x - a| < \delta\), then \(||g(x)| - |M|| < \varepsilon\).

As \(x \in D \setminus {a}\) was arbitrary, for any \(x \in D \setminus {a}\), if \(|x - a| < \delta\), then \(||g(x)| - |M|| < \varepsilon\). As \(\delta > 0\), there exists \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x - a| < \delta\), then \(||g(x)| - |M|| < \varepsilon\).

Case 2: Suppose \(M > 0\). Note that \(\frac{M}{2} > 0\) so that as \(\lim_{x\to a} g(x) = M\), there is a \(\hat{\delta} > 0\) such that for any \(x \in D \setminus {a}\), if \(|x-a| < \hat{\delta}\), then \(|g(x) - M| < \frac{M}{2}\). Let \(\delta = \min{\hat{\delta}, \tilde{\delta}}\). As \(\tilde{\delta} > 0\) and as \(\hat{\delta} > 0\), we have \(\delta > 0\). Now, let \(x \in D \setminus {a}\) be arbitrary, and suppose \(|x-a| < \delta\). Then \(|x-a| < \hat{\delta}\) so that:

\[ |g(x) - M| < \frac{M}{2} \] \[ -\frac{M}{2} < g(x) - M < \frac{M}{2} \] \[ \frac{M}{2} < g(x) < \frac{3M}{2}. \]

As \(\frac{M}{2} < g(x)\) and \(\frac{M}{2} > 0\), we have that \(g(x) > 0\), so that \(|g(x)| = g(x)\).
As \(M > 0\), we have that \(|M| = M\).

Now, as \(|x-a| < \tilde{\delta}\), we have that \(|x-a| < \tilde{\delta}\) so that \(||g(x)| - |M|| < \epsilon\).

Hence, \(||g(x)| - |M|| < \epsilon\). Thus, if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). As \(x \in D \setminus {a}\) was arbitrary, for any \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). As \(\tilde{\delta} > 0\), there exists \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\).

Proof: Let \(D \subseteq \mathbb{R}, E \subseteq \mathbb{R}\). Let \(g: D \rightarrow E\) be a function and let \(a \in \mathbb{R}\) be an accumulation point of \(D\). Also, let \(M \in \mathbb{R}\) and suppose \(\lim_{x \rightarrow a} g(x) = M\).

We will prove that \(\lim_{x \rightarrow a} |g(x)| = |M|\).

Let \(\epsilon > 0\) be arbitrary. As \(\lim_{x \rightarrow a} g(x) = M\), there is a \(\hat{\delta} > 0\) such that for any \(x \in D \setminus {a}\), if \(|x - a| < \hat{\delta}\), then \(|g(x) - M| < \epsilon\).

We will consider three cases.

Case 1: Suppose \(M = 0\). Then, let \(\delta = \hat{\delta}\). As \(\hat{\delta} > 0\), \(\delta > 0\). Let \(x \in D \setminus {a}\) be arbitrary, and suppose \(|x - a| < \delta\). Then, we have that \(|x - a| < \hat{\delta}\) so that \(|g(x) - M| < \epsilon\). In this case: \(|g(x) - 0| < \epsilon\), so \(|g(x)| < \epsilon\), and \(||g(x)|| < \epsilon\). From this, \(||g(x)| - |0|| < \epsilon\), and \(||g(x)| - 0|| < \epsilon\), so that \(||g(x)| - |M|| < \epsilon\). Hence, if \(|x - a| < \delta\), then \(||g(x)| - |M|| < \epsilon\).

As \(x \in D \setminus {a}\) was arbitrary, for any \(x \in D \setminus {a}\), if \(|x - a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). As \(\delta > 0\), there exists \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x - a| < \delta\), then \(||g(x)| - |M|| < \epsilon\).

\[ \begin{aligned} &y = g(x)\\ &\frac{3}{2}M\\ &M\\ &\frac{1}{2}M\\ &a - \delta\\ &a\\ &a+\delta \end{aligned} \]

Case 2: Suppose \(M > 0\). Note that \(\frac{M}{2} > 0\) so that as \(\lim_{x \to a} g(x) = M\), there is a \(\hat{\delta} > 0\) such that for any \(x \in D \setminus {a}\), if \(|x-a| < \hat{\delta}\), then \(|g(x) - M| < \frac{M}{2}\). Let \(\delta = \min(\hat{\delta}, \tilde{\delta})\). As \(\tilde{\delta} > 0\) and as \(\hat{\delta} > 0\), we have \(\delta > 0\). Now, let \(x \in D \setminus {a}\) be arbitrary, and suppose \(|x-a| < \delta\). Then \(|x-a| < \hat{\delta}\) so that:

\[ \begin{aligned} |g(x)| - M < \frac{M}{2} \\ -\frac{M}{2} < g(x) - M < \frac{M}{2} \\ \frac{M}{2} < g(x) < \frac{3M}{2}. \end{aligned} \]

As \(\frac{M}{2} < g(x)\) and \(\frac{M}{2} > 0\), we have that \(g(x) > 0\), so that \(|g(x)| = g(x)\). As \(M > 0\), we have that \(|M| = M\).

Now, as \(|x-a| < \tilde{\delta}\), we have that \(|x-a| < \tilde{\delta}\) so that \(|g(x)| - |M| < \epsilon\).

Hence, \(||g(x)| - |M|| < \epsilon\). Thus, if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). As \(x \in D \setminus {a}\) was arbitrary, for any \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). As \(\delta > 0\), there exists \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\).

Case 3: Suppose that \(M < 0\). Note that \(\frac{|M|}{2} > 0\) so that as \(\lim_{x \to a} g(x) = M\), there is a \(\hat{\delta} > 0\) such that for any \(x \in D \backslash {a}\), if \(|x - a| < \hat{\delta}\), then \(|g(x) - M| < \frac{|M|}{2}\). Let \(\delta = \min(\hat{\delta}, \tilde{\delta})\). As \(\hat{\delta} > 0\) and \(\tilde{\delta} > 0\), we have \(\delta > 0\). Now, let \(x \in D \backslash {a}\) be arbitrary, and suppose \(|x-a| < \delta\). Then, we have that \(|x-a| < \hat{\delta}\) so that:

\[ |g(x) - M| < \frac{|M|}{2} \] \[ -\frac{|M|}{2} < g(x) - M < \frac{|M|}{2} \] \[ M - \frac{|M|}{2} < g(x) < M + \frac{|M|}{2} \]

As \(M < 0\), \(|M| = -M\), so that:

\[ g(x) < M + \frac{|M|}{2} = M - \frac{M}{2} = \frac{M}{2} \]

Thus, \(g(x) < \frac{M}{2}\). As \(M < 0\), \(\frac{M}{2} < 0\) so that \(g(x) < 0\). Thus, \(|g(x)| = -g(x)\).

Now, as \(|x-a| < \delta\), we have \(|x-a| < \tilde{\delta}\) so that \(|g(x) - M| < \varepsilon\). Notice:

\[ \begin{aligned} | |g(x)| - |M| | &= | 1 \cdot |g(x)| - |M| | = | -1 \cdot (|g(x)| - |M|)| \\ &= |- g(x) - (-M)| = | -g(x) + M | = | - (g(x) - M)| \end{aligned} \]

Hence, \(||g(x)| - |M|| < \varepsilon\). Thus, if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \varepsilon\). As \(x \in D \backslash {a}\) was arbitrary for any \(x \in D \backslash {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \varepsilon\). As \(\delta > 0\), there exists \(\delta > 0\) such that for all \(x \in D \backslash {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \varepsilon\).

These cases are exhaustive. Hence, there exists a \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). As \(\epsilon > 0\) was arbitrary, for all \(\epsilon > 0\), there exists a \(\delta > 0\) such that for all \(x \in D \setminus {a}\), if \(|x-a| < \delta\), then \(||g(x)| - |M|| < \epsilon\). Therefore, \(\lim_{x \to a} |g(x)| = |M|\).

As \(D, E, g, a\) and \(M\) were arbitrary, for any \(D \subseteq \mathbb{R}, E \subseteq \mathbb{R}\) and any function \(g: D \to E\) and any accumulation point \(a \in \mathbb{R}\) of \(D\) and any \(M \in \mathbb{R}\), if \(\lim_{x \to a} g(x) = M\), then \(\lim_{x \to a} |g(x)| = |M|\).

The Triangle Inequality: For all real numbers \(x\) and \(y\), \(|x+y| \leq |x| + |y|\).

Proof: Let \(x\) and \(y\) be arbitrary real numbers. We will consider four cases.

Case 1: Suppose \(x < 0\) and \(y < 0\). Then, \(|x| = -x\) and \(|y| = -y\). Also, \(x+y < 0\), so \(|x+y| = -(x+y)\). Now:

\(|x+y| = -(x+y) = -x - y = (-x) + (-y) = |x| + |y|\).

Hence, \(|x+y| = |x| + |y|\), so that \(|x+y| \leq |x| + |y|\).

Case 2: Suppose \(x < 0\) and \(y \geq 0\). Then, \(|x| = -x\) and \(|y| = y\). We will consider two subcases.

Subcase 2.1: Suppose \(x+y \geq 0\). Then, \(|x+y| = x+y\). Now:

\(|x+y| = x+y \leq 2|x| + x + y = -2x + x + y = -x+y = |x| + |y|\).

Subcase 2.2: Suppose \(x+y < 0\). Then \(|x+y| = -(x+y)\). Now:

\(|x+y| = -(x+y) = -x -y \leq -x-y + 2|y| = -x-y+2y=-x+y = |x|+|y|\).

These subcases are exhaustive, so we have that \(|x+y| \leq |x| + |y|\).

Case 3: Suppose \(x \geq 0\) and \(y < 0\). Notice that \(|x+y| = |y+x|\), so by Case 2, we have \(|y+x| \leq |y| + |x| = |x| + |y|\). Hence, \(|x+y| \leq |x| + |y|\).

a = b = c < d = e = f \ a < f \ a < f

Case 4: Suppose \(x \geq 0\) and \(y \geq 0\). Then \(|x| = x\) and \(|y| = y\). Also \(x+y \geq 0\) so that \(|x+y| = x+y\). Now:

\[ |x+y| = x+y = |x| + |y|. \]

Thus, \(|x+y| = |x|+|y|\), so that \(|x+y| \leq |x|+|y|\). These cases are exhaustive, hence \(|x+y| \leq |x|+|y|\). As \(x\) and \(y\) were arbitrary, for all real numbers \(x\) and \(y\), \(|x+y| \leq |x|+|y|\).
The Reverse Triangle Inequality: For all real numbers \(x\) and \(y\), we have that:

\[ ||x| - |y|| \leq |x-y|. \]

Proof: Let \(x\) and \(y\) be arbitrary real numbers. We will consider four cases.

Case 1: Suppose \(x < 0\) and \(y < 0\). Then, \(|x| = -x\) and \(|y| = -y\). Now:

\[ ||x| - |y|| = |-x+y| = |-(x-y)| = ||-(x-y)|| = |x-y|. \]

Hence, we have \(||x| - |y|| = |x-y|\), so that \(||x| - |y|| \leq |x-y|\).

Case 2: Suppose \(x < 0\) and \(y > 0\). Then, \(|x| = -x\) and \(|y| = y\). Now:

\[ ||x| - |y|| = |-x-y| = |-(x+y)| = |x+y|. \]

By the triangle inequality, \(|x+y| \leq |x|+|y|\), so we have:

\[ ||x| - |y|| = |x+y| \leq |x|+|y| = |-x+y| = |-(x-y)| = |x-y|. \]

Hence, we have \(||x|-|y|| \leq |x-y|\).

Case 3: Suppose \(x \geq 0\) and \(y < 0\). Then, note that by case 2, \(| |y| - |x| | \leq |y-x|\). Also, we have that: \(| |x| - |y| | = | -(|x| - |y|) | = | |y| - |x| |\), and also that: \(|x-y| = |-(x-y)| = |y-x|\). Hence, we have that \(||x|-|y|| \leq |x-y|\).

Case 4: Suppose \(x \geq 0\) and \(y \geq 0\). Then \(|x| = x\) and \(|y| = y\). Now: \(||x|-|y|| = |x-y|\). Thus, \(||x|-|y|| \leq |x-y|\).

These cases are exhaustive, hence: \(||x|-|y|| \leq |x-y|\). As \(x\) and \(y\) were arbitrary, for all real numbers \(x\) and \(y\), \(||x|-|y|| \leq |x-y|\).

\[ \lim_{x\to a} g(x) = M \implies \lim_{x\to a} |g(x)| = |M| \] \[ \forall \epsilon>0 \; \exists \delta>0 \; \forall x \; (|x-a|<\delta \implies |g(x) - M| < \epsilon ) \]

By the Reverse Triangle Inequality:

\[ ||g(x)| - |M|| < \epsilon \text{ whenever } |x-a| < \delta \] \[ \begin{aligned} &\lim_{x \to a} (f+g)(x) = \lim_{x \to a}f(x) + \lim_{x \to a}g(x) \\ &\lim_{x \to a} (f g)(x) = \left( \lim_{x \to a}f(x) \right) \left( \lim_{x \to a}g(x) \right) \\ &\lim_{x \to a} \left( \frac{f}{g} \right) (x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \end{aligned} \] \[ \begin{aligned} \left| \frac{f(x)}{g(x)} - \frac{L}{M} \right| &= \left| \frac{M \cdot f(x) - L \cdot g(x)}{M \cdot g(x)} \right| \\ &= \left| \frac{M \cdot f(x) - ML + ML - L \cdot g(x)}{M \cdot g(x)} \right| \\ &= \left| \frac{M(f(x) - L) - L(g(x) - M)}{M \cdot g(x)} \right| \end{aligned} \] \[ \begin{aligned} \left| \frac{M(f(x)) - L}{M(g(x))} - L \frac{(g(x) - M)}{M(g(x))} \right| &= \left| \frac{M(f(x)) - L}{M(g(x))} \right| + \left| \frac{-L (g(x) - M)}{M(g(x))} \right| \\ &\leq \frac{|M(f(x)) - L|}{M(g(x))} + \frac{|-L(g(x)-M)|}{M(g(x))} \\ &= \frac{1}{M g(x)}|f(x)-L| + \frac{L}{M g(x)}|g(x) - M| \\ &\leq \frac{2}{3} \end{aligned} \]

Comment: The Reverse Triangle Inequality greatly simplifies the proof that

\[ \lim_{x\to a} g(x) = M \text{ implies } \lim_{x\to a} |g(x)| = |M|. \]

As \(||g(x)| - |M|| \leq |g(x) - M|\), when \(|g(x) - M| < \varepsilon\), we also have that \(||g(x)| - |M|| < \varepsilon\).

Definition/Notation: Suppose we have \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\) and functions

\[ F: D \to E \text{ and } g: D \to E. \]

We define a function \(\left(\frac{f}{g}\right): D \setminus {x \in D ,|, g(x) = 0} \to E\) by:

\[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \text{ for all } x \in \text{Dom}\left(\frac{f}{g}\right) \]

Our next ``goal" will be to show that: \(\displaystyle \lim_{x\to a} \left(\frac{f}{g}\right)(x) = \lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\displaystyle\lim_{x\to a} f(x)}{\displaystyle\lim_{x\to a} g(x)} = \frac{L}{M}\)

Note: In order for this to make sense, we will need \(\displaystyle \lim_{x \to a} g(x) = M \neq 0\) (can’t divide by zero).

\[ \begin{aligned} & \text{``Scratch Work''} \\ \left| \frac{f(x)}{g(x)} - \frac{L}{M} \right| & = \left| \frac{M \cdot f(x) - L \cdot g(x)}{M \cdot g(x)} \right| \\ & = \left| \frac{M \cdot f(x) - M \cdot L + M \cdot L - L \cdot g(x)}{M \cdot g(x)} \right| \\ & = \left| \frac{M(f(x) - L) - L(g(x) - M)}{M \cdot g(x)} \right| \\ & = \left| \frac{f(x)-L}{g(x)} + \frac{-L}{M g(x)} \cdot (g(x) - M) \right| \end{aligned} \]

As we have \( \lim_{x \to a} f(x) = L \) and \( \lim_{x \to a} g(x) = M \), we try to get expressions of the form \(|f(x) - L|\) and \(|g(x) - M|\).

\[ \begin{aligned} \left| \frac{f(x)-L}{g(x)} + \frac{-L}{M g(x)} \cdot (g(x) - M) \right| & \leq \left| \frac{f(x)-L}{g(x)} \right| + \left| \frac{-L}{M g(x)} \cdot (g(x) - M) \right| \text{ Triangle Inequality} \\ &= \frac{1}{|g(x)|} \left| f(x) - L \right| + \left| \frac{L}{M g(x)} \right| \left| g(x) - M \right|\\ & \leq |A||f(x) - L| + |B||g(x) - M| \\ & < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned} \]

We already have \(M \neq 0\), but we’ll need \(|g(x)| \neq 0\) on some \(\delta\)-window around \(a\). As \(\lim_{x \to a} g(x) \neq 0\), this will be possible.